Code: 20CE4501A

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

REPAIR AND REHABILITATION OF STRUCTURES (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
			DL		Marks		
	UNIT-I						
1	a)	Explain the factors that influence the	L2	CO1	7 M		
		durability of concrete. How do water-					
		cement ratio and cement type affect					
		durability?					
	b)	Explain in detail about common types of	L2	CO1	7 M		
		damages caused by corrosion in concrete					
		structures.					
	OR						
2	a)	Explain the differences between internally	L2	CO1	7 M		
		and externally generated temperature					
		differences in concrete structures.					
	b)	Identify common causes of distress in	L4	CO1	7 M		
		concrete structures and discuss how poor					
		construction practices contribute to these					
		issues.					

		UNIT-II			
3	a)	Describe the general steps involved in the damage assessment of a concrete structure. What factors must be considered during the assessment?	L4	CO2	7 M
	b)	Explain in detail about half cell potential survey test.	L2	CO2	7 M
		OR			
4	a)	Outline a typical procedure for assessing damage in a reinforced concrete beam. Include the key steps and tools that would be used.	L2	CO2	7 M
	b)	How can the results of non-destructive and semi-destructive testing methods be integrated to provide a comprehensive assessment of concrete damage?	L4	CO2	7 M
		UNIT-III			
5	a)	Explain in detail about polymeric concrete and give some examples where polymer concrete can be used for repairs.	L2	CO3	7 M
	b)	Describe about any two types of industrial wastes used in the preparation of concrete.	L3	CO3	7 M
		OR		1	
6	a)	Explain in detail about bacterial concrete.	L2	CO3	7 M
	b)	Explain the concept of fibre-reinforced concrete (FRC). How does the inclusion of fibres improve the properties of concrete?	L2	CO3	7 M

		UNIT-IV					
7	a)	Explain how do you diagnose distress of	L2	CO4	7 M		
		a structure.					
	b)	Outline the various repair techniques and	L4	CO4	7 M		
		explain any two in detail.					
OR							
8	a)	Describe the process of autogenous healing.	L2	CO4	7 M		
	b)	Explain with a neat sketch stitching of	L2	CO4	7 M		
		cracks, repair by jacketing.	L	CO4	/ 1 V1		
	UNIT-V						
9	a)	What is resin injection, and how is it used to	L3	CO5	7 M		
		repair cracks in concrete? Discuss its					
		effectiveness in comparison to traditional					
		grouting techniques.					
	b)	What are the common reasons for needing	L2	CO5	7 M		
		to strengthen existing concrete structures?					
		Provide examples where strengthening is					
		necessary.					
		OR					
10	a)	Analyze the role of section enlargement in	L4	CO5	7 M		
		the seismic rehabilitation of concrete					
		structures.					
	b)	Critically assess the effectiveness of	L4	CO5	7 M		
		cathodic protection in extending the service					
		life of concrete structures in marine					
		environments.					